Infrastructure & data analysis

Characterization equipment

What we can offer - SPOT

Analytical techniques

FTIR Spectroscopy

\rightarrow Identification and quantification of chemical compounds

- → Temperature-dependent measurements possible
- \rightarrow Solid as well as liquid materials (few mg)

Benchtop NMR spectroscopy

- \rightarrow Identification chemical structure of compounds
- \rightarrow ¹H- and ³¹P-NMR
- \rightarrow Soluble samples (10-30 mg)

vito.be

Thermal techniques

Dynamic scanning calorimetry (DSC)

- → Identification of thermal transitions (-90 °C 550 °C) → Melting, crystallization, glass transitions,...
- \rightarrow Kinetic studies
- \rightarrow Curing
- \rightarrow Solid as well as liquid materials (4-8 mg)

Thermogravimetric analyser (TGA)

- \rightarrow Thermal degradation profile (40 °C 1000 °C)
- \rightarrow Ash content
- \rightarrow Solids as well as liquid materials (1 mg)

vito.be

Thermo-mechanical techniques

Rheology

- \rightarrow Viscoelastic properties of soft solids and liquids
- \rightarrow Viscosity (also possible via viscometer)
- → Creep/stress relaxation
- \rightarrow -160 °C 600 °C
- \rightarrow Liquid samples: 2 g
- \rightarrow Rigid samples: 8 mm disks* (3 replicates)
- → Soft samples: 25 mm disks* (3 replicates)

Dynamic mechanical analyser (DMA)

- → Viscoelastic properties of soft solids
- → Creep/stress relaxation
- \rightarrow Tensile, 3-point bending & cantilever clamp
- \rightarrow -160 °C 600 °C
- → Rectangular bars*; max 60 x 10 x 1 mm but dimensions depend on type of material (3 replicates)

*specimen punches available to obtain right dimensions

Mechanical techniques

Tensile testing machine

- \rightarrow Mechanical testing of solid samples
 - \rightarrow Tensile mode
 - \rightarrow Compression mode
- → Identification of Young's modulus, stress, strain, break, toughness, ...
- \rightarrow Max force: 1kN
- → Tensile bars of different sizes and thicknesses possible: at least 5 replicates

Processing techniques

Extruders and injection molding

Small-scale twin screw extruder

- \rightarrow Blending
- \rightarrow Polymerization reactions
- \rightarrow Max 5 g

Reactive extruder

- \rightarrow Blending
- \rightarrow Polymerization reactions
- \rightarrow From 20 g/h to 1.5 kg/h

Injection molding

- \rightarrow Tensile bars (ISO527-2-1BA)
- \rightarrow DMA bars (60x10x1 mm)

Processing techniques

Pressing and drying

Hot press

- \rightarrow Molding, laminating, bonding
- \rightarrow Max temp: 343 °C
- \rightarrow Max clamping force: 15 tons
- \rightarrow Plates 15 x 15 cm

Vacuum oven

- \rightarrow Max 200 °C
- \rightarrow Different sizes

Application testing

Material application testing

Fire retardancy

UL94 chamber:

- → Testing of Flammability
- → burner in compliance with ASTM D5025
- → with simple angle adjustment and gas control system.

Coating equipment

- → Coating analyses like
 Disperser, Thickness
 & Cross Hatch Test
- → Impact test (coating metal)
- \rightarrow Washability Test
- \rightarrow Abrasion Test
- → Glossy/Reflection Test
- → Adhesion test (concrete)

Material preparation

Material preparation

Grinder

- → Grinding of (soft to medium hard) solids to powder
- → Max feed size of 15mm
- \rightarrow with simple time and speed control

Pelletizer

- → Converting polymers/plastics into uniform pellets (SP50 EN)
- → Guarantee standard quality
- \rightarrow Throughput of 30 to 1000 kg/h

Infrastructure & data analysis

Reactor equipment & Pilots

What we can offer

High pressure reactors (batch)

Screening reactor 4x10 mL

- \rightarrow N₂, H₂, Ar, (NH₃) atmosphere
- → Hastelloy C276

7 reactors of 100 mL

- \rightarrow N₂, H₂, Ar, NH₃ atmosphere
- \rightarrow SS 316, liners available

Single set-up (2x)

- \rightarrow 200 °C, 250 bars
- Double set (parallel operation possible)
- \rightarrow 200 °C, 250 bars
- Triple set (parallel operation possible)
- \rightarrow 300 °C, 250 bars

High pressure reactors (batch)

1 reactor of 200 mL

- \rightarrow N₂, H₂, Ar atmosphere
- \rightarrow 600 °C, 400 bars

1 reactor of 2 L

- \rightarrow N₂, H₂, Ar atmosphere
- $\rightarrow~350~^{\circ}\text{C},\,200$ bars
- \rightarrow Heavy duty motor (1/2 hp), tachometer, bottom drain valve
- \rightarrow SS 316, liners available

High pressure reactors (continuous)

Fixed bed reactor (L, G/L)

Two feeds

- \rightarrow Solvent solution
- \rightarrow N₂, H₂
- \rightarrow 300 °C, 140 bars
- \rightarrow Catalytic bed
- \rightarrow Fully automated control

CSTR-reactor (S/L, L, G/L)

vito.be

Glass reactors

Shakers for parallel reactions

 \rightarrow 150 °C, pressure less

ASE tubes for parallel reactions

- \rightarrow Up to 6 bars
- **6L reactor**

Downstream processing

Pressurized hot filtration unit

- \rightarrow 205 $^\circ\text{C}$ / 138 bars
- \rightarrow RT / 172 bars,
- \rightarrow Stirred
- \rightarrow SS 316

Other types of DSP

- \rightarrow Rotary evaporators
- \rightarrow Ovens
- \rightarrow Traditional DSP

PILOTs

Pilot site & quality control lab

- \rightarrow A flexible, multipurpose pilot site,
- \rightarrow all permits in place and safety measures,
- → gasses (hydrogen, nitrogen low and high pressure); compressed air; cooling water, power supply, storage facilities
- \rightarrow a quality control lab.

PILOTs

Pilots: Continuous processing

- → Multi-purpose extraction unit (Stainless steel, PILLAR II)
- → CSTR reactor, 67L; powder input
- → design capacity: max 191 kg/h*
- \rightarrow Solvents
- → Design temperature: 290
 °C; design pressure: 90
 barg
- \rightarrow Solvent recovery
- → Feeding system to supply solid material (< 500 µm) to the reactor

PILOTs

Pilots: Continuous processing

- → Multipurpose flexible pilot unit (Hastelloy C, Lignovalue)
- \rightarrow 4 catalytic fixed bed reactors, 100L
- \rightarrow design capacity: 4 kg/h 125 kg/h
- \rightarrow Hydrogen atmosphere
- \rightarrow Solvents
- → Design temperature: 290 °C; design pressure: 90 barg
- \rightarrow Solvent recovery

Infrastructure & data analysis

contact SPOT - Karolien Vanbroekhoven Karolien.vanbroekhoven@vito.be

